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Metastable Behavior of Low-Temperature 
Glauber Dynamics with Stirring 
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We consider the metastable behavior of a superposition of a ferromagnetic spin 
system with a Glauber dynamics and stirring dynamics. Starting from confi- 
guration -1,  minus spins at all lattice sites in a fixed volume under periodic 
boundary conditions, the process stays close to this configuration for an unpre- 
dictable time until the formation of a droplet, of spins + 1, with a certain critical 
size and decays to configuration + I in a relatively short time. We observe that 
the size of the droplet depends on the rate of exclusion. 

KEY WORDS: Ferromagnetic spin system; stirring dynamics; metastability. 

0. I N T R O D U C T I O N  

The two-dimensional  nearest neighbor ferromagnetic Ising model, with an 
external magnetic field, evolving according to a Glauber  dynamics (i.e., a 
reversible spin-flip dynamics)  was studied in ref. 6; it presents a metastable 
behavior. 

Here, we deal with the model obtained by superposing onto this a 
symmetric simple exclusion process. Our  mot ivat ion is to determine, in the 
limit as the temperature goes to zero, for fixed finite volume, if this model 
still presents the essential features that one associates with metastability. 
We choose the rate of symmetric simple exclusion competing with the 
corner erosion of ref. 6. 

In fact, if the external field is small and positive (0 < h < 1 ), the system, 
when started fr6m the configuration with all spins down, behaves as if it 
were in a steady state for a very long time until  a droplet is formed. Then, 
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in a relatively short time, it evolves to the configuration with all spins up. 
In the present case, the size of the above droplet does not depend on h. 

Moreover, our model is not reversible and we do not know explicitly 
its unique invariant measure, in contrast to ref. 6, where this was indeed 
used. 

The characterization of metastable behavior in the above fashion was 
introduced in ref. I, to which we refer for more general discussions. 

In ref. 8 the reader will find a procedure of renormalization of finite 
state-space Markov chains with transition probabilities exponentially small 
in a parameter fl; the main results in ref. 6 were rederived using such a 
method. This procedure gives us an estimate of the time needed for our 
process to reach the configuration with all spins up (+_1) when starting 
from the configuration with all spins down ( -  1). 

To obtain the stability of time averages we need basically two things: 
an upper bound on the time of thermalization (here to go back to - 1 )  and 
a lower bound on the time of tunneling. For this last one we will use the 
above estimate. 

As in our model there are equivalence classes, we cannot use 
Theorem 2.2 in ref. 8 to prove the asymptotic exponential behavior of the 
time until it reaches + 1 starting from - 1 ,  normalized by its mean. Thus 
we present another proof of this result. 

This paper is organized in the following way. We introduce the model 
and the dynamics and summarize our results in Section 1. In Section 2 we 
comment on the decomposition of the set of configurations and in Sec- 
tion 3 we prove the results. In the last section we discuss smaller rates of 
the symmetric simple exclusion process, where the exact picture of ref. 6 is 
preserved. 

1. M O D E L  A N D  RESULTS 

We consider the two-dimensional nearest neighbor ferromagnetic Ising 
model on a finite torus AN, with a random perturbation given by a sym- 
metric simple exclusion process. 

The process takes values on X~v = { - 1, + 1 } A~, where A N = { 1 ..... N} 2 
and its generator acts on functions f as 

Lf(q)  = y" e(x, q)[.f(,r') -f(,~)] + Y~ c(x, y, ,~)[f(,r ~,, ')-f( ' l)] 
x ~ A N  x, y e A N  

(1.1) 

where c(x, ~1) and c(x, y, ~) are the rates associated to Glauber dynamics 
and to stirring dynamics, respectively. We will only consider the Glauber 
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dynamics for which the spin at site x, when the configuration is r/s XN, 
flips at rate 

1 if A~H(q)<.O 
c(x, q) = exp{ - f lAxH(q)}  otherwise 

(1.2) 

where H(r/), the Hamil tonian at configuration r/, is given by 

1 h 
H(q)=-- -~  ~ ~l(X)q(y)--~ ~ ~l(x) (1.3) 

(x ,  ,) xeAt~ 

The first sum in the Hamiltonian runs over the pairs of nearest 
neighbor sites of AN, counting each pair only once, and 

AxH(rl) = H(rff) - H(tl) 

with 

with 

(r /(y) if x ~ y  qX(y) 
= ~ ( -  r/(y) otherwise 

We consider fl > 0 the inverse temperature. 
For  the stirring dynamics we will associate the rate 

if I l x - y l l = l  
(1.4) 

otherwise 

and Ilxll = Ix,I + Ix21. 
For  each initial configuration r/, these rates define a continuous-time 

Markov process (a, ~, t ~> 0) such that at t = 0, a7 = q  with probability one 
and f o r ~ # ~ a n d e > O  

(c(x, 0 ~ + o(e) 
l 

P(aT+~=~[a ~' = ( ) =  ~c(x, y, ~) e + o(e) 
[ 

(o(~) 

if ~ = ( x  for some x s A u  

if ~=(x.y,  I l x -y l l  = 1 

otherwise 

(1.5) 

q(z) if z # x , z #  y 

qx'Y(z) = J q ( x )  if z = y 

{ r/(y) if z = x  
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For each q E XN and A c XN, we define the hitting time 

T'~(A) = inf{ t >/0: tr, ~ ~ A } (1.6) 

Our main goal is to describe the behavior of the system when it starts 
from - 1 until it reaches + 1 for N and h both fixed and fl going to infinity. 

If h > 4 any spin - 1  will flip with rate 1 even if its neighbors are also 
- 1, and any spin + 1 will flip with a vanishing rate as fl --* c~. In this case 
the action of the stirring process is not seen before T-•-( +_1 ) because 

lim P( T -  ~-( + 1) > exp { f l (h - g )  } ) = O, V O < g < h  

In fact T-~-(+1) in this case is polynomial in N independent offl. 
If 2 < h < 4 and N>~ 3 after reaching the state with only one spin + 1, 

four things can happen. With rate 1 the system goes back to - 1 ,  with 
rate 4 it goes to a configuration with two neighbor + 1 spins, with rate 
(N 2 -  5)exp{ - f l ( 4 -  h)} it goes to the other configuration with two spins 
+ 1, and with rate 5 exp{ -flh} the exclusion process occurs involving the 
unique + 1 spin and basically nothing happens. 

As the third and fourth possibilities have vanishing rate (as f l ~  co), 
only the first two are important. If the system goes back to - 1 ,  everything 
starts anew, but if it gets to a configuration with two neighbor + 1 spins, 
then both of them flip back with vanishing rate, too [ e x p { - f l ( h - 2 ) } ] ,  
while its neighbors flip from - 1  to +1 with rates 1. So the pair of 
neighbor spins + 1 forms a critical droplet that nucleates the passage from 
- !  to + l .  

We now investigate the general picture of the passage from - 1  to + 1 
for smaller magnetic field, i.e., 0 < h < 1. 

From ref. 6 we know the behavior of the process given by L = Lo,  
where Lo is the generator associated to Glauber dynamics defined above. 
The question here is: What happens to this behavior when we add the stirring 
perturbation? Now, the size of the critical droplet does not depend on h. 

Before stating Theorem 1.1, we need some definitions. Let ~ be the set 
of configurations with all spins - 1 except for those in a rectangle Ii x lz, 
which are + 1, with Ii and lz less than N - 1 .  For r / e ~  define l(q)= 
min(ll, 12). 

Theorem 1.1. Suppose t h a t 0 < h < l  a n d q e ~ .  

(a) If l(r/) > 3, then 

lim inf P ( T " ( + ! )  < T '~ ( - I ) )  = 1 (1.7) 
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(b) If l(~/) = 1, then 

lim inf P ( T " ( - 1 )  < T " ( + 1 ) )  = 1 (1.8) 
,5' ~ oo 

(c) If 1(~/) = 2 or l(r/) = 3, then 

lira inf P ( T " ( + 1 )  < T " ( - 1 ) )  > 0  
f l ~ o o  

lira inf P( T"( - 1 )  < T " ( + I ) )  > 0  
f l ~ o o  

(1.9) 

Theorem 1.1 has as a consequence the possibility of  dividing the set of 
all configurations into three nonempty sets d ,  ~ ,  and cg such that d and 
cg are, respectively, the basins of attraction of - !  and + 1, while starting 
from ~ ,  the system can go to ~r or cg, both with comparable probabilities 
as fl increases. 

P r o p o s i t i o n  1.1. Suppose 0 < h  < 1. The set of configurations can 
be partitioned into three nonempty sets d ,  ~ ,  and cr such that: 

(a) If  r/e ~r and e > 0, then 

lim P ( T " ( - 1 )  < T " ( + I ) ,  T " ( - - 1 ) < e  at ) =  1 1.10) 

(b) If ~/~ (g and e > 0, then 

lim P ( T " ( + 1 )  < T"( - -1 ) ,  T'l(+1) < e  p(h +')) = 1 
/J' ~ oo, 

1.11) 

(c) I f q e ~ a n d e > 0 ,  then 

lim inf P( Tq( - i )  < T"( + i ) )  > 0 
f l - - o o  

lira inf P( T"( + 1 ) < T"( - 1 )) > 0 

and for every e > 0 

l ira P(T"({ - I ,  + I } )  <e a('+*)) = I 1.12) 

The next two theorems characterize the metastable behavior of 
--1 

(O ' ,  - ) , > ~ 0 "  

822/80/5-6-16 



1170 Peixoto 

T h e o r e m  1.2. Consider T= in f{ t~>0 :  aT-~= +1};  then 

T 
- - ~ z  in distribution as f l ~  oo (1.13) 
E( T) 

where r is a unit mean exponential  r andom variable. 

Before stating Theorem 1.3 (stability of  time averages),  we introduce 
the following notation: 

�9 T " =  T " ( +  1). 

�9 7"" = T " ( - 1 ) .  

�9 Jr denotes the space of probabi l i ty  measures  on :iN. 

�9 Cb(XN) denotes the space of bounded (continuous)  real functions 
on AN. 

T h e o r e m  1.3. Let ya be defined through the relation P ( T >  Ya) = e -  1. 
It is possible to find R a > 0 with R a ---, oo and Ra/y p ---, 0 as fl ~ ~ ,  so that  
if we define the d / : v a l u e d  processes (v,P),>~o via 

1 f t y p +  R# 
vP'(f) = -~ J,rp f(a,,) du, f e  Cb(XN) (1.14) 

then, for each initial configuration t /e  ~r 

P{ sup 
0 <~ s ~< ( T0 -- 3 R~ )/~,# 

P{ sup 
To/) ,#  <~ s <~ ( 7"o -- 3R#)/,:,p 

Iva~(f)-f(-l)l  >di} ---, 0 (1.15) 

Iv~( f ) - f (+l) l  >~}  ---,0 (1.16) 

as fl ~ ~ for each f e  Cb(XN) and each ~ > 0. Finally, let 

9,P=v, ~ if tr Ti )  

- v p otherwise (1.17) -- ( T~ - 3 R# )lEa 

Then, for each q E d ,  (v,P),~>o converges in law on D([0 ,  +oo) ,  Jr to a 
Markov  jump  process (v,)t~o given by 

v, = 6_1_ if t < r  

= 6 + !  if t > r  

where r is an exponential  r andom variable with mean one. 

( 1 . 1 8 )  
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2. CHARACTERIZATION OF THE SETS .W, M, AND ~' 

For  r /e  { - 1, + 1 } A, define T + r / a s  the configuration obtained from ~/ 
by flipping all the spins - 1  with at least two opposite neighbors. Define 
also T_q as the configuration obtained from q by flipping all the spins + 1 
with at least three opposi te  neighbors. Applying iteratively T+ (respectively 
T_)  on ~/, we obtain an increasing (decreasing) sequence of configurations 
that becomes constant  after a finite number  of  applications. Denote  by r] 
(resp. _q) this final configuration. 

If  0 < h < 1, each one of the flips defining T+ and T_  occurs with rate 
1 for our  Glauber  dynamics.  So one has the following result. 

Lemma 2.1. I f 0 < h < l  a n d 0 < f < h ,  then 

inf inf P ( A ) : = c c + > 0  
.0~0 qeX~ 

inf inf P ( B ) : = ~ _ > 0  
,6">10 q~X~ 

(2.1) 

where A and B are the following events: 

A := { a~ = r7 for some s e [ 0, e a~ ]; a ~  = (rT) } 

B := {a~ =_r/for some s e [0, ea6]; a ~  = (_--~} 

Proof. It is easy to see that  co+ is the probabil i ty of  all flips such that  
q--* (rT___)), where each step occurs with rate 1. I 

By L e m m a  2.1, in a t ime of order e ~', for any 6 < h, the system started 
from r/~ { - 1, + 1 } a~ can go with nonvanishing probabili ty,  as high as rT, 
but not higher. So d must  be the set of  configurations r /such that starting 
from rT, we are still likely to go to - 1  before + 1. 

So we define d as the set of  configurations r /such that  (r]__)) is equal to 
the configuration - 1 .  

Again by L e m m a  2.1, the system starting at r / can  go with nonvanish- 
ing probabil i ty  in a t ime of order em', for any 6 < h, as low as q, but not 
lower. But even if q is reached the system is likely to go to (q) in a time 
of order e ph, for any 6 < h. We define cd as the set of cont~gurations r/ 
such that  at least one of  the droplets of  + 1 spins in (r/) is a rectangle 
with all sides larger than 3 or  a ring of width larger than 1 a round the 
torus. 

Finally, ~ is the set of  configurations not in d or in cg. Starting from 
q e 8 ,  we can reach either -- 1 or + !- 
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3. PROOF OF RESULTS 

3.1. Proof of Theorem 1.1 

If r/e ~ ,  we may suppose without loss of generality that we have 11 
and 12 with l (q)= 11 <<. 12 such that all the spins in r/ are - 1  except those 
inside the rectangle R = { 1 ..... Ii } x { 1 ..... 12}. We also define the slices of R 
to be the sets H / =  {1 ..... l~} x {j} and V,.= {i} x {1 ..... 12} w i t h j e  { 1,..., 12} 
and i e { l  ..... 11}. 

First, note that Y, = # {x  ~ HI: a , ( x )=  - 1  } is not  a Markov process, 
because its jump rates depend on configuration. Moreover,  a jump 
followed by the action of T_  can destroy at most  three positive spins when 
these form an isolated block. In this manner  we obtain 

y,~< ~. def # { x E H 1 :  ( T _ a , ) ( x ) =  --1 or tr,(x) = --1} 

To prove part  (a) of the theorem, we need to compare  the number  of 
negative spins in Hi  with the process {X,},~o,  where X o = 0  and its jump 
rates are 

cx(n, n + 3) = 3/e-Ph + (1--2)  e -#(2 +t') 

cx(n, n -- 1) = 1 

Note  that 

cx(n, n + 3) />  max c r(n,  n + 1, r/) + m a x  c r(n,  n + 2, q) 
q q 

+ m a x  c?(n,  n + 3, tl) 
q 

and (3.1.1) 

Cx(n, n -  1) ~<min cr.(n, n -  1, q) 
q 

Now, define 

Or=inf{t>>-O: IrA = l - 1 }  

ox=inf{t>>.O: ) ( ,>1 l -  1} 

As a consequence of (3.1.1) we have that 

P ( O r >  t) >t P ( O x >  t) 
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To estimate l imp_~ P(Ox>t ) ,  consider T~, T~ ..... the times when 
some modification occurs in X,. We know that T~ , T k -- Tk_ , , k = 2, 3 ..... 
are i.i.d, random variables with exponential distribution of rate 
[ 1 + cx(n, n + 3)]; we have 

1 
P ( X r k = X r k _ , -  1)= = q  

1 + Cx(n, n + 3) 

ex(n ,n+ 3) 
P(Xr~=Xrk_, + 3)= 1 +Cx(n, n + 3 ) = P  

Now, for any M > rl/3-] + 1, 

P(Ox< t) = ~  P(OX< t, TN<<. t< TN+I) 
N 

N = F t /3q  + 1 

M 

I2 
N f l - l / 3 q +  I 

M 

E 
N ffi VII3-1 + 1 

+ ~ P(TN<---t<TN+1) 
N > M  

p[-I/3]+ 1 + Mprt/3q+ 1 + 2Mprt/3q+ i 

M 
+ ~.~ NpCtl3q+lp FtN-F//3q+tI/3q 

N ~  F / / 3 7  + 4  

+ ~ P(TN<~t<TN+l) 
N > M  

F ( O x < t I  TN <<. t< T#+l) P(T~t<<.t < TN+I) 

P(Ox<tITN<'~t<TN+I)+ ~ P(TN<~t<TN+I) 
N > M  

P ( X r ~ > ~ l - - l f o r s o m e i ~ { [ ~ ] + l  ..... N})  

M 

<<3MpVt/3a+ ~ +Mprt/37+~ ~ 3pN + ~ F(TN<~t< TN+~) 
N = I  N > M  

Taking t=exp{fl[h([-l/3-]+ l ) - e ] }  and M = r [  l +cx(n,n+ 3)+J]tq,  
we have that this upper bound tends to zero when fl tends to infinity, for 
any J > 0 .  

Moreover, given J~ >0,  a protuberance occurs in a time of order 
l exp{fl(h + 61)}, with probability close to one; this implies that a new slice 
will be created before t = exp { fl[ h([- l/3-] + 1 ) - e ] }. 

In this manner the process reaches a configuration with a larger 
rectangular droplet and by the strong Markov property the process restarts 
from this. 
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For  part  (b) of Theorem 1.1 it is enough to verify that the erosion 
occurs in a time of order  e pa, 0 < 5 < h, i.e., a time smaller than e ph with 
probabili ty close to one when fl tends to infinity and, since the jump and 
creation rates are smaller than e -p~, 0 < 5 < h, we have the result. 

For  part  (c) it is enough to verify that a jump following the action of 
T_ can destroy a slice of  size 3 and a jump following the action of  T+ can 
create a new slice. The result follows from Lemma 2.1: I 

3.2. Proof of Proposition 1.1 

(a) Using Theorem 1.1 and the fact that r/ is reached in a time of 
order 1, we have the result. 

(b) Using Theorem 1.1 and the fact that a new slice is created in a 
time of order e p~h+a), ~'5 > 0, we have the result. 

Before proving part (c) of  Proposi t ion 1.1 we introduce a definition. 

Def in i t ion  3.2.1.  A configuration q is said to be stable if any spin 
+ 1 has at least two positive neighbors and any spin - 1  has at least three 
negative neighbor spins. Thus, a configuration r/ is stable if q = Ui Ri, 
where R i are rectangles on the lattice of sides l~ ~<l~ with l~ > 1 for any i, 
and dist(R;, R j) > 2  if i r  

Considering q e ,~ ,  then (~___)) and ~ are stable with 2 ~< l~ ~< 3, Vk. 
Now, define the stopping time 

Ts~ = in f{ t  >~ 0: a T e S z  } 

We shall prove that 

(3.2.1) 

As any configuration in 8 ,  by Lemma 2.1, reaches a stable configura- 
tion in ~ in a time of order 1, we will compare our process with the 
Markov chain whose state space is the set of stable configurations in 8 ,  d ,  
and cg, as follows: 

d~ q2• ~2• "'" q2x(N--2)  

q3x3 ~3• "'" q3x(N--2)  

In fact, consider 

tl = inf{ t 1> 0: a,  --! is stable} 

tk = inf{ t ~> t~_ 1: a,  --! is stable} for k = 2,... 

lim P(T~,~,~ < e p(h+~)) = 1 (3.2.2) 
p ~ o o  
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Then {a~  -t } i>_-~ is the Markov  chain we want  to describe (up to its first exit 
from ~) .  

Consider: 

�9 g ~-- {d~ ,  (~, q 2 x 2 ,  ~2x3  ..... q 2 x ( N - - 2 ) ,  / t 3x3 ,  / /3x4  ..... q3x(N- -2 )}  the 
space of states. 

�9 d and c# are absorbing states. 

�9 p(r/, ()  > 0 if t/differs from ~ by only one slice (horizontal  or verical) 
in the droplet  of  positive spins or  ~/= (. 

In the Markov  chain described above each step waits an exponential  
time with mean of order em'. 

Define N ( t )  the number  of  steps on an interval [0, t ] ;  N ( t )  can be 
superestimated by a Poisson process with rate 2t, where 2 is of order e -ph. 

As the number  of steps in [0, e P ' + ' ) ] ,  e > 0 ,  goes to infinity ( = e  p') 
and ~ consists of transient states, then at this time the process goes out of 

with probabil i ty one. 
To  prove that  

lim inf P( T,r < T~6) > 0 

lim i n f P ( T , r  T~r  
f l~oo 

it is enough to show that  each finite sequence s = (s~ ..... Sk), where sl = q, 
q ~ 8 ,  sk ~ c# w d ,  and p(s i ,  s;+ l ) > 0, has positive probability.  

But P(s)>~(1/N2) k Vk ~ I%l, so that  we have the result. | 

3.3. Proof of Theorem 1.2 

Notat ion.  For simplicity T--•( + ! )  = T. 
Set ~ = ~r w g~ and define 

S = T -  T(Cg) 

We will prove that  

T(~r 
- - - ,  r in distribution (3.3.1) 

Yp 

where r is a unit mean  exponential  r andom variable and yp is defined by 

P(T(Cg) > y.~) = e-~ (3.3.2) 
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Then we will prove 

S 
m --~. 0 

7p 

from which it follows that 

in probability as fl --, ov (3.3.3) 

T 
- - - ~  in distribution as fl--, oo (3.3.4) 
?p 

After doing this we need only to replace ),p by ET,  and this will be 
done using a standard argument. 

To prove (3.3.1), we introduce a dynamics restricted to the set ~.  We 
present the idea in a general fashion. 

We say that a set ~0 of configurations is connected if for any pair of 
configurations r h ,  r/2e~0 it is possible to go from ~/l to r/2 by a chain of 
transformations in which a single dynamics occurs at each step without 
leaving co. 

The Glauber + stirring dynamics restricted to cp is defined by the 
rates 

8 (x ' r / )={0  (x 'q)  otherwiseif r / , q - ~ o  

y,  rl ) = f c( x ,  y ,  q ) if r / ,q 'Yecp 
~(x, 10 otherwise 

(3.3.5) 

The process (#,),>_.o can be coupled with (a",),>. o in a very intuitive 
and useful way, as in ref. 6: the two processes jump together until the latter 
escapes from cp; at this moment the former process stays still and afterward 
they evolve independently. We will use this coupling several times, so we 
call it coupling A, as in ref. 6. 

In our case, cp = ~.  Consider/7(- ) the invariant measure for restricted 
dynamics. 

Lemma 3.3.1. Consider T ~  =inf{t>~0: #~o~r then 

lim P ( T ~ < e P ( h + ~ ) ) = I ,  V6>O 
f l ~ o o  

ProoL 

F ( T ~  < e p(h + ~)) = F ( T ~  < e p(h +~), r/o~ d )  + F ( T ~  < e alh § ~), qo ~ )  

= f i ( d )  + ~ F ( T ~  < e  p~h+~)) ff~(r/o = a )  
o ' E . ~  
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By Proposition 1.1, 

lim P ( T ~  < e pu'+~)) = 1 if a e ~  

Then, 

lim P(T~<eP(h+'~))= lim [ f i (aC)+f i (~) ]  = 1 I 

We now couple (~,a),a o and (a,-~-),1_.o in the following manner: the 
initial configuration of the former is chosen with respect to p; they evolve 
independently until they meet and after that they evolve together. We call 
it coupling B. 

L e m m a  3.3.2. We have l i m p _ o ~ f i ( - - 1 )  = 1. 

Proof. Consider O=inf{t~>0; ~ , ~ = - 1 } .  By Lemma 3.3.1 we know 
that 

lim P(O<ePIh+a ' ) )=l ,  VO,>O 

On the other hand, 

lim P(#7  ! ~ -1 ,  for some t~ [0, eP(4--h--'~2)]) = 0  (3.3.6) 

In this way, 

lim P(5, ~ = 5 ,  -l-, for some t < e  ~(h +a')) = 1 

For t ~ [exp{fl(h + fit)}, exp{fl(4 - h - ~z)} ] and coupling B we have 

lim P(O, --~ # - 1 )  

= lim { P(0,~- r 1, 6 ;  ~- = ~,~) + P ( f ,  ~- r --1, #7 ! :~ 0,~)} 

~> lim P(07  ~- ~ --1, 07  ! = ~ )  
/ /400  

= lim P(#,~ ~: - 1 )  

=p(~\{ -_1})>_-o 

By (3.3.6) and (3.3.7) we have 

(3.3.7) 

lim / 7 ( - ! ) =  1 | 



1178 Peixoto 

We now prove (3.3.1) by showing the corresponding asymptotic loss 
of memory. 

This consists in verifying that 

lim lAp(s, t)[ = 0  (3.3.8) 
p~ov 

where 

Ap(s, t )=  P(T-!(~f) > (s + t) Yp) - P(T-~-(~) > sy/j) P(T-!(cg) > typ) 

As in ref. 6, using the Markov property, we easily get 

P( T-  ~-(cg) > (s + t) ?p) 

~< P(T-!(qg) >sTp) P(T-~-(cg) > typ) 

+ ~. P (T -  l_(cg) > syp, as,s) = t/) P(T"(Cg) > t7/3) 
~ / {  -!} 

In this way we obtain 

Ap(s, t) ~< P(T-~-(~ ') > syp, as>zJ @ - 1 )  

On the other hand, 

P(T-~-(eg) > ( s+  t) yp) 

x P(T-!(eg) >syp) P(T-!(cg) > typ) 

+ PIG,~} = - ! ,  ~o:  ~(~'~/T-'-(~) > s~,p) 

x P ( T - ! ( ~ )  > syp) P ( T - ! ( ~ ) >  typ) 

Now by coupling B, 

p(a~  ~ - I )  = p( ,~)  ~ -1, (~o; = ,~) + p(a~} ~ -!, ao; ~ a~o) 
~< (a,rp ~ --1) + P(6o-1 ~ 

= P(~/{ - ! })  +~(~/{  -I_}) (3.3.9) 

The above probability goes to zero when fl goes to infinity by 
Lemma 3.3.2 and we finish the proof. 

To prove (3.3.3) we observe that since T is larger than the time needed 
for the first spin to flip starting from - 1 ,  we have 

Y,a ~ e#(4- h) 
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Now (3.3.3) follows using part (b) of Proposition 1.1. To replace ~,~ by 
ET, observe that, by monotonicity, 

P ( T >  ~,pu) ~< [ P ( T >  Y/~)]" 

Using (3.3.4), it follows that P ( T > ? p ) < I  if fl is larger, so we can use 
dominated convergence below: 

lim --=ET lim ~ P ( T > t ) d t =  lim P u du=l  | 

3.4. Proof of Theorem 1.3 

As mentioned in the introduction, to get the stability of suitable time 
averages we need first a lower bound on the tunneling time T - l ( + 1 ) .  As 
for the asymptotics of such a tunneling time, an important result can be 
obtained by ref. 8 and we recall it now. 

Theorem 3.4.1. We have the following results. 

(a) lim/~_oo(1/fl)log T - ~ - ( + l ) = 6 - h  in probability. 

(b) limp~o~(1/fl)logE(T-~-( + l ) ) = 6 - h .  

Proof. The proof follows from the renormalization scheme developed 
in ref. 8. 

Basic Hypothesis. Suppose we have a Markov chain with finite state 
space 5 a and with transition probabilities satisfying the following condi- 
tion: for any r/, ( �9 50, with q 4: (, if P(q, () > 0, then 

exp[ -- A(~/, () fl-- yfi] ~< P(~/, () ~< exp[ --A(~/, () f i+  yfl] 

where A(q, () assumes the values do = 0 < A~ < - - .  < d , , ,  and ), = 7 ( f l )  ~ 0 

as fl--~ oo. 

Iteration Scheme (ref. 8, p. 101). We have ( ~ * = { q e X N :  q is 
stable} ) 

5~t~ +1} a~, 

5Pr r176 {--1, + l ,  ~*} ,  

5P<2)=Mr { --1, + l } ,  

M ~~ { -!, +!, ~*} 

Me"= {--1, +1} 

M(2 '=  { + 1} 
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Consider ~b: t~ -~ XN. We have 

V1 = inf V(q, ( ) =  inf 
q e M ,  

= inf inf 
q ~ M ,  (b,t 
~ ~o=,t 

= h  

inf Ito,,~(~b) 
rl ~ M,  ~b , t 

t - - l  

i = 0  

V 2 =  i n f  V ( I ) ( q ,  ( )  
q ~ M  ~1), 
(e.~(I) 

= inf inf i(1)(r 
qe  M(I}, q/,t, 
( ~,q, tt) q~0 = q, 

t - - I  

= inf inf ~ ,~l)(~i, 4i+l) 
q ~ M  I, ~, t  i = 0  

~ ,=~ 

t - - I  

= inf inf ~, ~[O)(~i,~i+l)--Vl, 
q E M  (I), ~,t, i = 0  
~eS,"(t) <ko=q, 

= 6 - 2 h  

~ i ,  ~ i +  l ~ , ~ { I )  

Then from Theorem 2.1 in ref. 8 we have the proof  of  Theorem 3.4.1. | 

L e m m a  3 .4 .1 .  Let us call I ( . )  the indicator function of  - 1  and 
take R ~ = e x p [ f l ( 3 - h ) ] ,  0 < h  < 1. Then for 6 > 0, there exists flo(fi)< ov 
such that 

sup P ~ I (a~)ds -1  >6, T"( f~)>R ~<exp - c  a (3.4.1) 

for R > 2R~ and fl > flo, where ca is a positive constant. 

Proof. The proof follows from ref. 2. In fact, we use Proposition 1.1 
to prove that 

p(fl)= sup P ( Y ~ = l , T " ( f f ) > t p )  
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goes to zero when fl goes to infinity, where 

r~,=0 

=1 

1181 

if a. visits - 1  during ( ( i -  1) tp, ( i -  1) tp+v/~p ] 

and spends the rest of time interval ( ( i -  l) t/j, it s] in ( - 1 )  

otherwise 

Lemma 3.4.2. 
all O > O, 

for i=  1 ..... Np and tp=exp{fl(2h)}. | 

There exists Ra ~ ~ with Rp/yp ~ 0 such that for 

a s  f l  ---~ cx3. 

1 ~s+R~ du-- 1 ) sup P sup --fi- I(a~) > 0 ~ 0 (3.4.2) 
Js f l ~ t  O<s<Tq(~)--2R# lXp 

Proof. The proof follows from ref. 2, with Rp=exp{f l(4--h)} .  | 

The above choice of R~ also works if we reverse the roles of - 1  and 
+ 1 in Lemma 3.4.2. This fact and the use of the strong Markov property 
at Tp allows us to conclude the validity of (1.16). | 

3.5. The Pattern of Escape 

The estimate of T - ! ( + 1 )  suggests how the process escapes from - 1 .  
First note that the configuration in ~ has at least two positive spins and 
the configuration 

r/* 

belongs to ~.  
In fact, any rotation or translation of q* belongs to ~.  Denote this 

class by ~ '* .  
Now consider ~ 2 ,  the class of configurations with two positive spins, 

and jgz, the class of configurations with two neighbor positive spins 
( J / 2 c  J//2). We have the following result. 
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Theorem 3.5.1. We have 

lim p(ar--~(~,r4 ~ j /2 ;  ar-!(~)-l- ~ J r  1 

Proof. The proof of this result is easy from Theorem 3.4.1. 
Suppose that 

--I ,.~2 
ffT--!(j72) 

Until T - ! ( J 7  2) the exclusion process only translates the configurations 
with one positive spin, so that from the results for the Glauber dynamics (6) 
we have that the necessary time for the creation of two non-neighbor 
positive spins is larger than e x p { f l ( 8 - 2 h - e ) }  with probability close to 
one, for any positive e, when fl goes to infinity. 

Now, suppose that 

O'T_!(.~ ) ~ .,,4/ 

In this manner, this configuration has at least three positive spins. But this 
creation, without reaching Jg* (i.e., the stirring process does not occur in 
the configuration with two positive spins at neighbor sites), needs a time 
larger than e x p { f l ( 8 - 3 h - ~ ) } ,  with probability tending to one, for any 
positive 3, when fl tends to infinity, because only the Glauber dynamics 
creates positive spins. 

Since 8 - 2 h > 6 - h  and 8 - 3 h > 6 - h  for any h <  1, we have the 
result. | 

Notice that Theorem 3.5.1 implies that the escape from - 1  to ,~ does 
not follow the reversed path, in contrast with the Glauber dynamics. 

4. OTHER EXCLUSION RATES 

Now we to consider the exclusion rate c(x, y, tl)=e -#(2-h-a), where 
h < 2 -  h -  ~ ~< 2 - h  (that is, in this case the stirring mechanism does not 
compete with the erosion of corners on Glauber dynamics). 

In these cases, the critical droplet has a size that depends on the 
magnetic field h. The model, for each ~ > 0, has the metastable behavior. 

Results 

Theorem 4.1. Suppose that 0 < h <  1 and t /e~.  

(a) If l(t/) < (2 -- ~)/h, then for e > 0, 

lim P(T"( - _1 ) < T~( + 1), T~( -- I) ~< e #lh(l(~)- 1)+ ~)) = 1 
fl~oo 
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(b) If  l(~/) > (2 -- 6)/h and l(r/) > 3, then for e > 0, 

lim P ( T " ( + 1 )  < T " ( - 1 ) ,  T " ( + 1 )  ~<e p(z-h-6+~)) = 1 
p~oo. 

(c) If  l(r/) > (2 - 6)/h and l(r/) ~< 3, then for e > 0, 

lira P ( T " ( -  1) < T"(+I) )  > 0 

lim P ( T " ( + 1 )  < T"(--1_)) > 0 

lim P(T"{ -1_, +1}  ~<e p ( 2 - h - 6 + a ) )  = 1 
fl~ov 

Note  that  if 6 = 0 ,  i.e., c(x, y, r / )=  e -p(2-h), we have that  the droplet  
has a very precise shape and size. In this sense we have a continuity in 6 
of  the size of the droplet. In fact, if l ~> 4, the set ~ is similar to case studied 
in ref. 6. 

Theorem 4.1 has as a consequence the possibility of  dividing the set 
of all configurations into three nonempty  sets ~1, ~ ,  and c~, as in 
Proposi t ion 1.1 and the analog of Theorem 1.3. 

T h e o r e m  4.2.  Consider T= in f{ t~>0 :  a,-'~-= +1};  then, 

T 
- - - *  r in distribution as fl ~ 
ET 

where r is a unit mean exponential  r andom variable. 

Theorem 4.2 characterizes the metastable  behavior  of the new models. 
To  prove Theorems 4.1 and 4.2, it is enough to modify a few things in 

the proofs of  Theorems 1.1 and 1.2. In these cases the equivalence classes 
in the renormalizat ion procedure of  ref. 8 are unitary sets and so, for 
(2 - 6)/h > 3, the results also follow from ref. 8. 
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